

A Unit of A. Shama Rao Foundation Srinivas Institute of Technology

(Approved by AICTE New Delhi, Govt. of Karnataka, Bengaluru Affiliated to Visvesvaraya Technological University, Belagavi) Valachil, Merlapadavu, Mangaluru - 574 143

Course Outcomes (COs)

Department of Information Science and Engineering

Programme Name: B.E.-Information Science & Engineering

CONTENTS

SL NO	PARTICULARS	PAGE NO
1	2022 Scheme-Second Year Core Courses	2
2	2021 Scheme-Second Year Core Courses	4
3	2021 Scheme- Third Year Core Courses	8
4	2021 Scheme-Fourth Year Core Courses	12
5	2018 Scheme-Second Year Core Courses	13
6	2018 Scheme-Third Year Core Courses	19
7	2018 Scheme-Fourth Year Core Courses	24

2022 Scheme(UG)

Course Outcome for Information Science Engineering

Course Name	Mathematics for Computer Science
Course Code	BCS301
Course outcome	s (COs): At the end of the course the student will be able to:
BCS301.1	Illustrate the basic concepts of Probability distribution, Markov chain, Statistical inference and Design of experiments.
BCS301.2	Apply suitable probability distribution models and design of experiments for the given scenario in Computer science & engineering.
BCS301.3	Analyze & solve engineering problems using Statistical methodology and tools.
BCS301.4	Interpret the overall knowledge gained to demonstrate the problems arising in practical situations.
Course Name	Digital Design and Computer Organization
Course Code	BCS302
Course outcomes (COs): At the end of the course the student will be able to:	
BCS302.1	Understand Digital Logic, Processor memory and inter device communication.
BCS302.2	Analyze Digital circuits, internal Organization of Memory and understand Processor performance.
BCS302.3	Design combinational circuits and sequential circuits using Verilog code and implement interconnection of processor and peripheral devices.
BCS302.4	Optimize digital circuits using Mathematical and Verilog tools and evaluate Processor performance including Impact of cache/Pipelining.
Course Name	Operating Systems
Course Code	BCS303
Course outcome	$a (CO_{a})$. At the end of the course the student will be able to:

Course Outcomes of Second -Year Courses

	~ P ~ J
Course Code	BCS303
Course outcomes (COs): At the end of the course the student will be able to:	
BCS303.1	Demonstrate the fundamentals of operating system and system services.
BCS303.2	Apply suitable techniques for management of different resources.
BCS303.3	Develop and implement various scheduling algorithms and system services.
BCS303.4	Analyze I/O management and file system, concepts of protection and security.

Course Name	Data Structures and Applications
Course Code	BCS304
Course outcomes (COs): At the end of the course the student will be able to:	
BCS304.1	Understand various Data Structures and their applications
BCS304.2	Apply Fundamental Data Structures to Problem Solving
BCS304.3	Utilize Linked Lists in Problem Solving
BCS304.4	Develop solutions using Trees, Graphs, and Advanced Data Structures

Course Name	Data Structures Lab
Course Code	BCSL305
Course outcomes (COs): At the end of the course the student will be able to:	
BCSL305.1	Identify various linear and non-linear data structures.
BCSL305.2	Analyze various linear and non-linear data structures
BCSL305.3	Demonstrate the working nature of different types of data structures and their applications
BCSL305.4	Apply the appropriate data structure for solving real world problems

Course Name	Object Oriented Programming with JAVA
Course Code	BCS306A
Course outcomes (COs): At the end of the course the student will be able to:	
BCS306A.1	Understand the basics of object-oriented programming using java
BCS306A.2	Apply object-oriented concepts to write java programs
BCS306A.3	Develop Java programs using Classes, Inheritance, interface and Exception handling concepts to solve real world problems
BCS306A.4	Apply the concept of multithreading, autoboxing and enumerations in program development

2021 Scheme(UG)

Course Outcome for Information Science Engineering

Course Outcomes of Second-Year Courses

Course Name	Transform Calculus, Fourier Series and Numerical Techniques
Course Code	21MAT31
Course outcomes (COs): At the end of the course the student will be able to:	
21MAT31.1	Illustrate the concepts of– Laplace, Fourier & Z transformation, Fourier series, Numerical solutions of PDE & ODE and Calculus of variation.
21MAT31.2	Apply the above acquired knowledge to solve the problems in engineering.
21MAT31.3	Analyze the solutions of the real world problems using above techniques.
21MAT31.4	Interpret the overall knowledge gained to demonstrate the problems arising in practical situations.

Course Name	Data Structures and Applications
Course Code	21CS32
Course outcomes (COs): At the end of the course the student will be able to:	
21CS32.1	Explore the fundamental concepts of data structures
21CS32.2	Apply suitable operations on data structures
21CS32.3	Design and Develop algorithms that make use of data structures
21CS32.4	Implement solution for solving problems using high level languages with suitable data structure algorithms

Course Name	Analog and Digital Electronics
Course Code	21CS33
Course outcomes (COs): At the end of the course the student will be able to:	
21CS33.1	Explain the characteristics and applications of BJT,OP-Amp,555 timer and digital circuits
21CS33.2	Illustrate analog and digital circuits
21CS33.3	Design analog and digital circuits using simplifying techniques.
21CS33.4	Demonstrate and test analog and digital circuits

Course Name	Computer Organization and Architecture	
Course Code	21CS34	
Course outcome	Course outcomes (COs): At the end of the course the student will be able to:	
21CS34.1	Explain the basic organization of a computer system.	
21CS34.2	Experimenting the functioning of different sub systems, such as processor, input/output, and memory.	
21CS34.3	Analyze the different arithmetic and logical units.	
21CS34.4	Illustrate hardwired control and micro programme.	

Course Name	Object Oriented Programming with JAVA Laboratory
Course Code	21CSL35
Course outcomes (COs): At the end of the course the student will be able to:	
21CSL35.1	Analyze the necessity for Object Oriented Programming paradigm over structured
	programming and become familiar with the fundamental concepts in OOP.
21CSL35.2	Demonstrate the ability to design and develop java programs, analyse, and interpret
	object-oriented data and document results
21CSL35.3	Apply object-oriented concepts using Java to develop programs
21CSL35.4	Develop user friendly applications using Console based I/O GUI/ File concepts

Course Name	Programming in C++	
Course Code	21CS382	
Course outcome	Course outcomes (COs): At the end of the course the student will be able to:	
21CS382.1	Understand the basics of object-oriented programming concepts and design a solution to a problem using class types, function operations.	
21CS382.2	Apply the code reusability and extensibility functionalities using object oriented features.	
21CS382.3	Analyze the file handling mechanisms and explore the Performance analysis of I/O Streams.	
21CS382.4	Implement the features of C++ including templates, exceptions and file handling for providing programmed solutions to complex problems.	

Course Name	Mathematical Foundation for Computing, Probability and Statistics
Course Code	21MATCS41
Course outcomes	s (COs): At the end of the course the student will be able to:
21MATCS41.1	Illustrate the concepts of – Logic, Relations & Functions, Graph theory, Probability distributions and Statistical methods.
21MATCS41.2	Apply the above acquired knowledge to solve problems in Computer science & engineering.
21MATCS41.3	Analyze the solutions of the real world problems using above techniques.
21MATCS41.4	Interpret the overall knowledge gained to demonstrate the problems arising in practical situations.

Course Name	Design and Analysis of Algorithms
Course Code	21CS42
Course outcome	s (COs): At the end of the course the student will be able to:
21CS42.1	Analyze the performance of the algorithms, state the efficiency using asymptotic notations and analyze mathematically the complexity of the algorithm
21CS42.2	Apply Master Theorem to compute time efficiency of recursive algorithms and compare efficiency of algorithms
21CS42.3	Solve various problems using appropriate design techniques and compare efficiency of algorithms
21CS42.4	Experiment with various design techniques to solve problems

Course Name	Microcontroller and Embedded Systems
Course Code	21CS43
Course outcome	s (COs): At the end of the course the student will be able to:
21CS43.1	Describe the architectural features and instructions of ARM microcontroller.
21CS43.2	Apply the knowledge gained for Programming ARM for different applications
21CS43.3	Interface external devices with ARM microcontroller and interpret the basic hardware
	components and their selection method based on the characteristics and attributes of an
	embedded system
21CS43.4	Develop the hardware /software co-design, firmware design approaches and
	demonstrate the need of real time operating system for embedded system application

Course Name	Operating System
Course Code	21CS44
Course outcomes	s (COs): At the end of the course the student will be able to:
21CS44.1	Demonstrate the structure and functions of the operating system and its needs
21CS44.2	Apply suitable techniques for management of different resources
21CS44.3	Analyze processes, threads, memory, storage and scheduling algorithms
21CS44.4	Analyze I/O management and file system, concepts of protection and security.

Course Name	Python Programming Laboratory
Course Code	21CSL46
Course outcome	s (COs): At the end of the course the student will be able to:
21CSL46.1	Explain programming features of python and other data structures lists, tuples and dictionaries.
21CSL46.2	Apply various features of python to solve problems
21CSL46.3	Interpret the concepts of Object-Oriented Programming as used in Python.
21CSL46.4	Explore the need for scraping websites and working with PDF, JSON and other file formats

Course Name	R Programming
Course Code	21CS483
Course outcome	s (COs): At the end of the course the student will be able to:
21CS483.1	Understand the fundamentals of R programming
21CS483.2	Utilize R Data types, classes and functions for developing programs.
21CS483.3	Make use of different R Data Structures
21CS483.4	Apply critical programming concepts to process real world problem

Course Outcomes of Third-Year Courses

Course Name	Automata Theory and compiler Design
Course Code	21CS51
Course outcomes	s (COs): At the end of the course the student will be able to:
21CS51.1	Explain the core concepts of automata theory and theory of computation and the structure of compiler.
21CS51.2	Apply the concepts of automata theory and theory of computation to design the different phases of the compiler.
21CS51.3	Design regular and context free grammars for different classes of language and make use of these concepts in compiler design.
21CS51.4	Design computation models for problems in Automata theory and adaptation of such models in the field of compilers.

Course Name	Computer Networks
Course Code	21CS52
Course outcome	s (COs): At the end of the course the student will be able to:
21CS52.1	Understand the basic needs of communication systems
21CS52.2	Interpret the communication challenges and its solutions
21CS52.3	Identify and organize the communication system network components
21CS52.4	Design communication networks for user requirement

Course Name	Database Management Systems
Course Code	21CS53
Course outcome	s (COs): At the end of the course the student will be able to:
21CS53.1	Identify, define and analyze database objects, enforce integrity constraints on a database using RDBMS
21CS53.2	Use Structured Query Language (SQL) for database manipulation and also demonstrate the basic of query evaluation
21CS53.3	Design and build simple database systems and relate the concept of transaction, concurrency control and recovery in database
21CS53.4	Develop application to interact with databases, using relational algebra expression from queries.

Course Name	Artificial Intelligence and Machine Learning
Course Code	21CS54
Course outcome	s (COs): At the end of the course the student will be able to:
21CS54.1	Explain the basic principles of AI and Machine learning towards problem solving
21CS54.2	Familiarize machine learning process, basics of decision tree and probability learning
21CS54.3	Apply Knowledge of machine learning algorithms on various dataset and compare results
21CS54.4	Apply decision tree learning and artificial neural networks.

Course Name	Database Management Systems Laboratory with Mini Project
Course Code	21CSL55
Course outcomes	s (COs): At the end of the course the student will be able to:
21CSL55.1	Create, Update and query on the database.
21CSL55.2	Demonstrate the working of different concepts of DBMS
21CSL55.3	Design a database application with help ER diagram, schema diagram
21CSL55.4	Implement, analyze and evaluate the project developed for an application.

Course Name	Software Engineering and Project Management
Course Code	21CS61
Course outcomes (COs): At the end of the course, the student will be able to:	
21CS61.1	Understand software engineering activities and analyze the role of various process models.
21CS61.2	Explain object-oriented concepts, create class models, and recognize the importance of agile methodology and DevOps in software development.
21CS61.3	Illustrate the role of project planning and quality management in software development, and comprehend the importance of activity planning.
21CS61.4	Explain and apply different planning models for project scheduling and management while developing a comprehensive understanding of these concepts.

Course Name	Full stack Development
Course Code	21CS62
Course outcomes	s (COs): At the end of the course the student will be able to:
21CS62.1	Understand Django's MVT architecture and apply it in web application development.
21CS62.2	Design and create models and forms for efficient web page development.
21CS62.3	Analyze and employ advanced Django features like template inheritance, generic views, and content rendering for comprehensive web application development.
21CS62.4	Apply jQuery-based AJAX integration to build responsive full-stack web applications, demonstrating critical thinking and problem-solving skills.

Course Name	Software Testing
Course Code	21IS63
Course outcome	s (COs): At the end of the course the student will be able to:
21IS63.1	Explain the importance of software testing and quality assurance in software development.
21IS63.2	Apply software testing concepts to select appropriate testing methods for various scenarios.
21IS63.3	Analyze how software testing contributes to the success of software development projects.
21IS63.4	Evaluate testing models and demonstrate the ability to derive test cases for different software applications.

Course Name	Software Testing Laboratory
Course Code	21ISL66
Course outcomes (COs): At the end of the course the student will be able to:	
21ISL66.1	Analyze requirements, identify problem areas, and create test cases for given scenarios.
21ISL66.2	Design solutions, implement them, and document the process, including flow graph creation.
21ISL66.3	Design, develop, debug the Project and create appropriate document for the software artifact.
21ISL66.4	Apply appropriate functional testing strategies, compare different techniques, and classify problems according to suitable testing models while considering test coverage metrics

Course Outcomes of Fourth - Year Courses

Course Name	Cryptography And Network Security
Course Code	21IS71
Course outcomes (COs): At the end of the course the student will be able to:	
21IS71.1	Understand Cryptography, Network Security theories, algorithms and systems
21IS71.2	Apply various cryptography and network security operations to different applications while analyzing their effectiveness.
21IS71.3	Evaluate different methods for authentication and access control, considering their strengths and weaknesses.
21IS71.4	Evaluate key management techniques and build protection mechanisms to secure computer network

Course Name	Cloud Computing
Course Code	21CS72
Course outcomes (COs): At the end of the course the student will be able to:	
21CS72.1	Understand and analyze various cloud computing platforms and service provider.
21CS72.2	Illustrate various virtualization concepts
21CS72.3	Identify the architecture, infrastructure and delivery models of cloud computing.
21CS72.4	Explain the Security aspects of CLOUD.

2018 Scheme(UG)

Course Outcome for Computer Science Engineering

Course Outcomes of Second -Year Courses

Course Name	Transform Calculus, Fourier Series & Numerical Techniques
Course Code	18MAT31
Course outcome	s (COs): At the end of the course the student will be able to:
18MAT31.1	Illustrate the concepts of – Laplace, Fourier & Z transformation, Fourier series, Numerical solutions of ODE and Calculus of variation.
18MAT31.2	Apply the above acquired knowledge to solve the problems in engineering.
18MAT31.3	Analyze the solutions of the real world problems using above techniques.
18MAT31.4	Interpret the overall knowledge gained to demonstrate the problems arising in practical situations.

Course Name	Data Structures And Applications
Course Code	18CS32
Course outcome	s (COs): At the end of the course the student will be able to:
18CS32.1	Explore the fundamental concepts of data structures.
18CS32.2	Apply suitable operations on data structures.
18CS32.3	Develop algorithms that make use of data structures.
18CS32.4	Implement solution for solving problems using high level languages.

Course Name	ANALOG AND DIGITAL ELECTRONICS
Course Code	18CS33
Course outcomes	s (COs): At the end of the course the student will be able to:
18CS33.1	Recognize the application and working of Analog devices, Amplifiers and Converters
18CS33.2	Illustrate different method for Boolean expression minimization like Kmap method Quine-Mclusky Method Etc.
18CS33.3	Implementation of combinational circuit using different application.
18CS33.4	Construct components of sequential circuits and their applications using Kmap method.

Course Name	COMPUTER ORGANIZATION
Course Code	18CS34
Course outcomes	s (COs): At the end of the course the student will be able to:
18CS34.1	Explain the basic organization of a computer system.
18CS34.2	Demonstrate functioning of different sub systems, such as processor, input/output and memory.
18CS34.3	Illustrate hardwired control and micro programmed control, pipelining, embedded and
180534.4	other computing systems.
100334.4	Design and analyze simple artificite and logic units.

Course Name	SOFTWARE ENGINEERING
Course Code	18CS35
Course outcomes (COs): At the end of the course the student will be able to:	
18CS35.1	Outline software engineering principles and activities involved in building large software programs. Identify ethical and professional issues and explain why they are of concern to software engineers.
18CS35.2	Explain fundamentals of object-oriented concepts using UML.
18CS35.3	Apply the Knowledge of system models for design and development of software.
18CS35.4	Plan the software testing strategy and use various metrics for evolution process and apply the techniques, skills, modern engineering tools for project planning and identify software quality parameters using measurements and metrics.

Course Name	Discrete Mathematical Structures
Course Code	18CS36
Course outcomes (COs): At the end of the course the student will be able to:	
18CS36.1	Illustrate the concepts of- Logic, principles of counting, Relations and Functions,
	Recurrence relation and Graph theory .
18CS36.2	Apply the above acquired knowledge to solve the problems in Computer science and
	engineering.
18CS36.3	Analyze the solutions of the real world problems using above suitable techniques.
18CS36.4	Interpret the overall knowledge gained to demonstrate the problems arising in practical
	situations.

Course Name	ANALOG AND DIGITAL ELECTRONICS LABORATORY
Course Code	18CSL37
Course outcome	es (COs): At the end of the course the student will be able to:
18CSL37.1	Demonstrate the working of various basic gates.
18CSL37.2	Design various analog circuit using different ICS and other components and test for the given appropriate inputs.
18CSL37.3	Implement combinational and sequential circuit using different ics, flip flops and registers.
18CSL37.4	Experiment various analog and digital circuits using appropriate simulation tool.

Course Name	DATA STRUCTURES LABORATORY
Course Code	18CSL38
Course outcome	s (COs): At the end of the course the student will be able to:
18CSL38.1	Identify various linear and non-linear data structures.
18CSL38.2	Implement various operations of linear and non-linear data structure.
18CSL38.3	Analyze various operations of linear and non-layered data structure.
18CSL38.4	Experiment with appropriate tools to edit compile and execute programs on data structures and document it.

Course Name	COMPLEX ANALYSIS, PROBABILITY AND STATISTICAL METHODS
Course Code	18MAT41
Course outcome	s (COs): At the end of the course the student will be able to:
18MAT41.1	Illustrate the concepts of– complex functions, transformation, Probability distributions and Statistical methods.
18MAT41.2	Apply the above acquired knowledge to solve the problems in engineering.
18MAT41.3	Analyze the solutions of the real world problems using above techniques.
18MAT41.4	Interpret the overall knowledge gained to demonstrate the problems arising in practical situations.

Course Name	DESIGN AND ANALYSIS OF ALGORITHMS
Course Code	18CS42
Course outcome	es (COs): At the end of the course the student will be able to:
18CS42.1	Explain various computational problem solving techniques.
18CS42.2	Apply appropriate method to solve a given problem.
18CS42.3	Describe various methods of algorithm analysis.
18CS42.4	Estimate the performance of various algorithms.

Course Name	OPERATING SYSTEMS
Course Code	18CS43
Course outcome	es (COs): At the end of the course the student will be able to:
18CS43.1	Demonstrate the structure and functions of the operating system and its needs.
18CS43.2	Apply suitable techniques for management of different resources.
18CS43.3	Analyze processes, threads, memory, storage and scheduling algorithms.
18CS43.4	Analyze I/O management and file system, concepts of protection and security.

Course Name	MICROCONTROLLER AND EMBEDDED SYSTEMS
Course Code	18CS44
Course outcome	es (COs): At the end of the course the student will be able to:
18CS44.1	Understand the fundamentals and architecture of ARM based systems.
18CS44.2	Interpret the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
18CS44.3	Explain ARM instructions, embedded system design and need of object system for embedded system design.
18CS44.4	Write Assembly language programs embedded C program for suitable purposes.

Course Name	OBJECT ORIENTED CONCEPTS
Course Code	18CS45
Course outcome	es (COs): At the end of the course the student will be able to:
18CS45.1	Understand the basics of object-oriented programming using C++ and JAVA.
18CS45.2	Apply object-oriented concepts to write C++/Java programs.
18CS45.3	Develop Java programs using Classes, Inheritance, interface, Exception handling and multi-threaded concepts to solve real world problems.
18CS45.4	Develop GUI applications using Swing components and Event handling mechanisms

Course Name	DATA COMMUNICATION
Course Code	18CS46
Course outcome	es (COs): At the end of the course the student will be able to:
18CS46.1	Enables students to understand the operation of the components in a data communication network and the functional relationships of these components.
18CS46.2	Understand basics of data communication, networking, switching, internet and their importance.
18CS46.3	Analyze the services and features of various protocol layers in data networks.
18CS46.4	Analyze the different protocols and IEEE 802.xx standards.

Course Name	DESIGN AND ANALYSIS OF ALGORITHMS LABORATORY
Course Code	18CSL47
Course outcome	es (COs): At the end of the course the student will be able to:
18CSL47.1	Design algorithms using appropriate design techniques such as brute-force, greedy, dynamic programming.
18CSL47.2	Implement a variety of algorithms such assorting, graph related, combinatorial, etc., in a high level language using java.
18CSL47.3	Analyze and compare the performance of algorithms using language features uins java.
18CSL47.4	Apply and implement learned algorithm design techniques and data structures to solve real- world problems.

Course Name	MICROCONTROLLER AND EMBEDDED SYSTEMS LABORATORY
Course Code	18CSL48
Course outcome	es (COs): At the end of the course the student will be able to:
18CSL48.1	Recall ARM instruction set to develop programs.
18CSL48.2	Demonstrate the application development for arm microcontroller using Keil micro version-4.
18CSL48.3	Develop and test assembly level program using ARM 7TDMI/LPC2148 Keil Uvision 4 tool/compiler.
18CSL48.4	Make use of ARM embedded C programs to interface external devices.

Course Outcomes of Third-Year Courses

Course Name	MANAGEMENT AND ENTREPRENEURSHIP FOR IT INDUSTRY
Course Code	18CS51
Course outcome	es (COs): At the end of the course the student will be able to:
18CS51.1	Possess knowledge on the basis concepts of management and organization functions.
18CS51.2	Illustrate the importance of directing and controlling, leadership styles, communication, coordination and controlling.
18CS51.3	Outline the role of entrepreneurs in economic development and identification of barriers, business opportunities.
18CS51.4	Make use of project report formats ERP, IPRS and institutional support in entrepreneurship.

Course Name	COMPUTER NETWORKS AND SECURITY
Course Code	18CS52
Course outcome	es (COs): At the end of the course the student will be able to:
18CS52.1	Explain the principles of application layer protocols and services.
18CS52.2	Illustrate transport layer services and infer UDP and TCP protocols.
18CS52.3	Classify routers, IP and routing algorithms in network layer.
18CS52.4	Explain the network security overview, attacks and Cryptographic algorithms and infer multimedia networking and network management.

Course Name	DATABASE MANAGEMENT SYSTEM
Course Code	18CS53
Course outcome	s (COs): At the end of the course the student will be able to:
18CS53.1	Outline the components of DBMS, Identify and define database objects to build ER diagram for database.
18CS53.2	Summaries relational model concepts, enforce integrity constraint on a database and Construct an Entity-Relationship (E-R) model from specifications along with the transformation of the conceptual model into corresponding logical data structures.
18CS53.3	Make use of Structured Query Language (SQL) for database manipulation and Develop simple application to interact with databases.
18CS53.4	Apply the normalization process for effective database design, demonstrate components of transaction processing, recovery strategies and choose different concurrency control mechanisms of DBMS.

Course Name	AUTOMATA THEORY AND COMPUTABILITY
Course Code	18CS54
Course outcomes	(COs): At the end of the course the student will be able to:
18CS54.1	Explain the fundamental understanding of the core concepts in automata theory and
	Theory of Computation.
18CS54.2	Explain different types of automata, formal languages and classification of problems
	based on different models of computation
18CS54.3	Demonstrate and compare different types of automata and formal languages for
	computational model.
18CS54.4	Apply appropriate automata theory and families of automaton such as FSM, PDA, TM
	etc. for modeling and solving real time computing problems

Course Name	APPLICATION DEVELOPMENT USING PYTHON
Course Code	18CS55
Course outcome	es (COs): At the end of the course the student will be able to:
18CS55.1	Explain programming constructs of Python
18CS55.2	Demonstrate proficiency of list, tuple, string, file, dictionary and pattern matching.
18CS55.3	Interpret the object-oriented concepts using Python
18CS55.4	Implement a solution for given problem using suitable Python programming language features

Course Name	UNIX PROGRAMMING
Course Code	18CS56
Course outcome	es (COs): At the end of the course the student will be able to:
18CS56.1	Explain Unix architecture, file System and use of basic commands.
18CS56.2	Illustrate shell programming and to write shell scripts.
18CS56.3	Understand the concepts UNIX API's and process control, process accounting, user identification and different IPC mechanisms
18CS56.4	Understand signal handing mechanism, daemon characteristics, coding rules and error logging.

Course Name	COMPUTER NETWORK LABORATORY
Course Code	18CSL57
Course outcome	es (COs): At the end of the course the student will be able to:
18CSL57.1	Analyze and evaluate the performance of Ethernet LAn and wireless LAN through simulation
18CSL57.2	Analyze and evaluate the performance of GSM and CDMA model through simulation
18CSL57.3	Develop Java programs for CRC and RSA algorithm
18CSL57.4	Develop Java programs for Bellmann ford and leaky bucket algorithms, socket programming using TCP and UDP.

Course Name	DBMS LABORATORY WITH MINI PROJECT
Course Code	18CSL58
Course outcome	es (COs): At the end of the course the student will be able to:
18CSL58.1	Apply the database concepts, technology and create the relations by specifying primary and foreign keys
18CSL58.2	Construct a database by using data definition data manipulation and control languages
18CSL58.3	Design a database application entry to the values with the help of queries using sql
18CSL58.4	Implement, analyze and evaluate the project development for an application

Course Name	SYSTEM SOFTWARE AND COMPILERS
Course Code	18CS61
Course outcome	es (COs): At the end of the course the student will be able to:
18CS61.1	Understand the system software concepts assemblers and loaders
18CS61.2	Develop top down, bottom-up parsers and shift reduce parsers and opcode generation
18CS61.3	Develop System programs using lex and yacc tools
18CS61.4	Generate ssd, sst intermediate code generation and machine code generation

Course Name	COMUTER GRAPHICS AND VISUALIZATION
Course Code	18CS62
Course outcome	es (COs): At the end of the course the student will be able to:
18CS62.1	Design and implement algorithms for 2D graphics primitives and attributes.
18CS62.2	Illustrate Geometric transformations on both 2D and 3D objects.
18CS62.3	Apply concepts of clipping and visible surface detection in 2D and 3D viewing, and Illumination Models.
18CS62.4	Decide suitable hardware and software for developing graphics packages using OpenGL.

Course Name	WEB TECHNOLOGY AND ITS APPLICATIONS
Course Code	18CS63
Course outcome	es (COs): At the end of the course the student will be able to:
18CS63.1	Understand the fundamental concepts of different types of web technologies.
18CS63.2	Apply basic skills to construct simple web pages using client and Server-Side technologies.
18CS63.3	Develop hands on experience using on HTML, CSS, JavaScript, PHP and jQuery, AJAX using different IDE.
18CS63.4	Implement real time application using markup languages, server-side programming and Web Services.

Course Name	DATA MINING AND DATA WAREHOUSING
Course Code	18CS641
Course outcome	es (COs): At the end of the course the student will be able to:
18CS641.1	Explain the basic concepts of data Mining and data warehousing. `
18CS641.2	Interpret different tools and techniques for data Mining and data warehousing.
18CS641.3	Illustrate different algorithms for data mining and architectural models for data warehousing.
18CS641.4	Apply appropriate data mining algorithms and techniques to solve Association, Classification and clustering Problems.

Course Name	ADVANCED JAVA AND J2EE
Course Code	18CS644
Course outcome	es (COs): At the end of the course the student will be able to:
18CS644.1	Explain advanced Java concepts on such as collections, server side programming and data base programming.
18CS644.2	Demonstrate advanced Java concepts like Enumerations, Auto-boxing and Annotations, String handling, Collections, JSP, JDBC and Servlet.
18CS644.3	Make use of the Advanced Java programming features to develop Java applications.
18CS644.4	Develop program for suitable problem using collections, servlet, JSP and JDBC for development of Java web based applications

Course Name	SYSTEM SOFTWARE LABORATORY
Course Code	18CSL66
Course outcomes (COs): At the end of the course the student will be able to:	
18CSL66.1	Understand requirements for the given problem.
18CSL66.2	Solve the given problem in any programming language(C, C++, JAVA)
18CSL66.3	Build necessary test cases for any given problem.
18CSL66.4	Apply various testing techniques for the given problem, build basic documentation for
	the software artifact

Course Name	SOFTWARE TESTING LABORATORY
Course Code	18CSL67
Course outcome	es (COs): At the end of the course the student will be able to:
18ISL67.1	Understand requirements for the given problem.
18ISL67.2	Solve the given problem in any programming language(C, C++, JAVA)
18ISL67.3	Build necessary test cases for any given problem.
18ISL67.4	Apply various testing techniques for the given problem, build basic documentation for
	the software artifact

Course Outcomes of Fourth-Year Courses

Course Name	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING
Course Code	18CS71
Course outcome	es (COs): At the end of the course the student will be able to:
18CS71.1	Explain the basic theory of Artificial intelligence and Machine Learning.
18CS71.2	Illustrate the use of different techniques and Algorithms of AI in problem solving.
18CS71.3	Apply appropriate ML techniques to learn concept learning, Decision tree, Artificial neural networks.
18CS71.4	Apply appropriate ML algorithms for Classification, Regression, Reinforcement learning Problems.

Course Name	BIG DATA AND ANALYTICS
Course Code	18CS72
Course outcomes (COs): At the end of the course the student will be able to:	
18CS72.1	Understand fundamentals of Big Data and its analytics in the real world.
18CS72.2	Illustrate the Big Data framework like Hadoop and NOSQL to efficiently store and process
	Big Data to generate analytics.
18CS72.3	Apply the MapReduce programming model to process the big data along with Hadoop tools such as pig and Hive to generate analytics.
18CS72.4	Make use of Machine learning algorithm for big data, web contents and Social Networks
	to provide analytics with relevant visualization tools.

Course Name	USER INTERFACE DESIGN
Course Code	18CS734
Course outcomes (COs): At the end of the course the student will be able to:	
18CS734.1	Understand the importance and characteristics of user interface design.
18CS734.2	Understand user interface design process and business functions.
18CS734.3	Develop system menus, navigation schemes and window characteristics.
18CS734.4	Understand screen based controls and design the prototypes and test plans of user interface.

Course Name	DIGITAL IMAGE PROCESSING
Course Code	18CS741
Course outcomes (COs): At the end of the course the student will be able to:	
18CS741.1	Explain the fundamental concepts of a digital image processing.
18CS741.2	Illustrate the basic Image Processing operations.
18CS741.3	Apply Image Processing algorithms in various domains using various transforms.
18CS741.4	Analyze different Image processing tools and techniques in different applications of Image segmentation, Enhancement and Compression.

Course Name	CRYPTOGRAPHY
Course Code	18CS744
Course outcome	es (COs): At the end of the course the student will be able to:
18CS744.1	Understand cryptography basics, algorithms and mathematical background for cryptography.
18CS744.2	Analyze the important cryptographic algorithms.
18CS744.3	Explore key management issues and algorithms.
18CS744.4	Describe digital certificates, authentication protocols, email security and IP Security

Course Name	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING LABORATORY
Course Code	18CSL76
Course outcomes (COs): At the end of the course the student will be able to:	
18CSL76.1	Implement and demonstrate various AI search Algorithms.
18CSL76.2	Implement and Demonstrate ANN Model using Backpropagation Algorithm
18CSL76.3	Implement and Demonstrate ML classification, regression Algorithms.
18CSL76.4	Experiment with appropriate tools to edit, compile, and execute programs on AIML and document it.

Course Name	INTERNET OF THINGS
Course Code	18CS81
Course outcome	es (COs): At the end of the course the student will be able to:
18CS81.1	Interpret the basic challenges posed by IOT and Impact of IOT on networking.
18CS81.2	Compare the deployment of different architectural models and technologies of smart objects to connect them to network.
18CS81.3	Explain the role of IOT protocols for efficient network communications, data analytics and Security in IOT
18CS81.4	Analyze different sensor technologies for sensing real world entities and identify the applications of IOT in industry.

Course Name	STORAGE AREA NETWORKS
Course Code	18CS822
Course outcomes (COs): At the end of the course the student will be able to:	
18CS822.1	Identify key challenges in managing information and analyse different storage networking technologies and data protection implementation methods
18CS822.2	Use the components and implement the storage networking technologies.
18CS822.3	Describe the backup ,recovery and data protection topologies, information availability and business continuity.
18CS822.4	Illustrate storage infrastructure, management activities and analysing security risk in storage infrastructure.